Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.3 The Fundamental Theorem for Line Integrals - 16.3 Exercises - Page 1134: 12

Answer

a) $f(x,y) = 3x + x^2y^2 + K$ b) $9$

Work Step by Step

$a)$ $F(x, y) = (3 + 2xy^2)i + (2x^2y)j$ $\frac{dP}{dy} = 4xy$ $\frac{dQ}{dx} = 4xy$ $\frac{dP}{dy} = \frac{dQ}{dx}$ , therefore $F(x,y)$ is conservative. $f_x(x, y) = \int (3 + 2xy^2) dx$ $ = 3x + x^2y^2 + g(y)$ $fy(x, y) = \frac{d}{dy}(3x + x^2y^2 + g(y))$ $ = 2x^2y + g^1(y)$ $F = \nabla f$ $ = 3x + x^2y^2 + K$ $b)$ $\int_c Fdr = \int_c \nabla fdr$ $ = f(r(b)) - f(r(a))$ $ = f(4, \frac{1}{4}) - f(1, 1)$ $ = (3(4) + (4^2)(\frac{1}{4})^2) - (3(1) + (1)^2(1)^2)$ $ = (12 + 1) - (3 + 1)$ $ = 9$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.