Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.1 Vector Fields - 16.1 Exercises - Page 1114: 24

Answer

$\nabla f = (2xye^{\frac{y}{z}})i + ((x^2e^\frac{y}{z})+ (\frac{x^2ye^\frac{y}{z}}{z}))j + (-\frac{x^2y^2e^\frac{y}{z}}{z^2})k$

Work Step by Step

Derive $f(x,y,z)$ with respect to $x$ to get: $f_{x}(x, y, z) = 2xye^{\frac{y}{z}}$ Derive $f(x,y,z)$ with respect to $y$ to get: $f_{y}(x, y, z) = (x^2e^\frac{y}{z})+ \frac{x^2ye^\frac{y}{z}}{z}$ Derive $f(x,y,z)$ with respect to $z$ to get: $f_{z}(x, y, z) = -\frac{x^2y^2e^\frac{y}{z}}{z^2}$ the gradient of f is calculated as follows: $\nabla f = f_{x}(x, y, z)i + f_{y}(x, y, z) j + f_{z}(x, y, z)k$ $ = (2xye^{\frac{y}{z}})i + ((x^2e^\frac{y}{z})+ \frac{x^2ye^\frac{y}{z}}{z})j + (-\frac{x^2y^2e^\frac{y}{z}}{z^2})k $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.