Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.1 Vector Fields - 16.1 Exercises - Page 1114: 23

Answer

$$\frac{x}{\sqrt {x^{2}+y^{2}+z^{2}}}i+\frac{y}{\sqrt {x^{2}+y^{2}+z^{2}}}j+\frac{z}{\sqrt {x^{2}+y^{2}+z^{2}}} k$$

Work Step by Step

By using chain rule of differentiation, we have $f_x(x,y,z)=\frac{x}{\sqrt {x^{2}+y^{2}+z^{2}}}$ and $f_y(x,y,z)=\frac{y}{\sqrt {x^{2}+y^{2}+z^{2}}}$ and $f_z(x,y,z)=\frac{z}{\sqrt {x^{2}+y^{2}+z^{2}}}$ Gradient vector field of $f$ is: $$\frac{x}{\sqrt {x^{2}+y^{2}+z^{2}}}i+\frac{y}{\sqrt {x^{2}+y^{2}+z^{2}}}j+\frac{z}{\sqrt {x^{2}+y^{2}+z^{2}}} k$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.