Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - Review - Exercises - Page 1102: 29

Answer

$\frac{81}{2}$

Work Step by Step

$\int\int_{E}xydV=\int_{0}^{3}\int_{0} ^{x}\int_{0} ^{x+y} xydzdydx$ $=\int_{0}^{3}\int_{0} ^{x} xyz|_{0} ^{x+y}dydx$ $=\int_{0}^{3}\int_{0} ^{x} x^{2}y+xy^{2}dydx$ $=\int_{0}^{3}\frac{ x^{2}y^{2}}{2}+\frac{xy^{3}}{3}|_{0} ^{x}dx$ $=\int_{0}^{3}\frac{ 5x^{4}}{6}dx$ $=[\frac{ x^{5}}{6}]|_{0}^{3}$ $=\frac{81}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.