Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.8 Triple Integrals in Spherical Coordinates - 15.8 Exercises - Page 1090: 20

Answer

$\int_{\pi/2}^{2\pi}\int_{0}^{\pi/2} \int_1^{2}f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi d\rho d\phi d\theta$

Work Step by Step

The conversion of rectangular coordinates to spherical coordinates is given as: $x=\rho \sin \phi \cos \theta; y=\rho \sin \phi \sin \theta;z=\rho \cos \phi$ Here, $\rho=\sqrt {x^2+y^2+z^2}$; $\phi =\cos^{-1} [\dfrac{z}{\rho}]; \theta=\cos^{-1}[\dfrac{x}{\rho \sin \phi}]$ Now, $\iiint f(x,y,z) dz r dr d\theta=\iiint f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi d\phi d\rho d\theta$ Plug the boundaries , then we get the triple integration as follows; $\iiint f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi d\phi d\rho d\theta= \int_{\pi/2}^{2\pi}\int_{0}^{\pi/2} \int_1^{2}f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi d\rho d\phi d\theta$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.