Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.8 Triple Integrals in Spherical Coordinates - 15.8 Exercises - Page 1090: 15

Answer

$0\leq \phi\leq \dfrac{\pi}{4}, 0\leq \rho\leq \cos \phi$

Work Step by Step

The conversion of rectangular coordinates to spherical coordinates is given as: $x=\rho \sin \phi \cos \theta; y=\rho \sin \phi \sin \theta;z=\rho \cos \phi$ Here, $\rho=\sqrt {x^2+y^2+z^2}$; $\phi =\cos^{-1} [\dfrac{z}{\rho}]; \theta=\cos^{-1}[\dfrac{x}{\rho \sin \phi}]$ Here, we have $z=\sqrt {x^2+y^2}$ This gives: $\rho \cos \phi=\sqrt{(\rho \sin \phi \cos \theta)^2+(\rho \sin \phi \sin \theta)^2}$ and $\rho \cos \phi =\rho \sin \phi \implies \cos \phi = \sin \phi$ Now, $\phi =\cos^{-1} [\dfrac{z}{\rho}]; \implies \phi=\dfrac{\pi}{4}$ and $x^2+y^2+z^2=z$ This gives: $\rho=\cos \phi$ Hence, we have $0\leq \phi\leq \dfrac{\pi}{4}, 0\leq \rho\leq \cos \phi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.