Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.8 Triple Integrals in Spherical Coordinates - 15.8 Exercises - Page 1089: 4

Answer

a) $(2, 0,\dfrac{\pi}{6})$ b) $(4, \dfrac{11\pi}{6},\dfrac{\pi}{6})$

Work Step by Step

The conversion of rectangular coordinates to spherical coordinates are given as: $x=\rho \sin \phi \cos \theta; y=\rho \sin \phi \sin \theta;z=\rho \cos \phi$ Here, $\rho=\sqrt {x^2+y^2+z^2}$; $\phi =\cos^{-1} [\dfrac{z}{\rho}]; \theta=\cos^{-1}[\dfrac{x}{\rho \sin \phi}]$ (a) Here, we have $\rho=2$ $\phi =\cos^{-1} [\dfrac{z}{\rho}] \implies \phi =\cos^{-1} \dfrac{\sqrt 3}{2} \implies \phi=\dfrac{\pi}{6}$; $\cos \theta=\dfrac{0}{2 \sin \dfrac{\pi}{6}} \implies \theta=0$ Thus, we have $(r, \theta, \phi)=(2, 0,\dfrac{\pi}{6})$ (b) Here,we have $\rho=4$ $\cos \phi =\dfrac{\sqrt 3}{2}$ and $ \phi=\dfrac{ \pi}{6}$ and $\cos \theta=\dfrac{-1}{2 \sin \dfrac{\pi}{6}}$ or, $ \theta=\dfrac{11\pi}{6}$ Thus, we have $(r, \theta, \phi)=(4, \dfrac{11\pi}{6},\dfrac{\pi}{6})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.