Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.8 Triple Integrals in Spherical Coordinates - 15.8 Exercises - Page 1089: 3

Answer

a) $(2, \dfrac{3\pi}{2},\dfrac{\pi}{2})$ b) $(2, \dfrac{3\pi}{4},\dfrac{3\pi}{4})$

Work Step by Step

a) $\rho=\sqrt {x^2+y^2+z^2}=\sqrt {0^2+(-2)^2+0^2}=\sqrt {0+4+0}=2$ $\cos \phi =\dfrac{0}{2}$ This gives: $\phi=\dfrac{\pi}{2}$ $\cos \theta=\dfrac{0}{2 \sin (\dfrac{\pi}{2}) }$ and $\theta=\dfrac{3\pi}{2}$ Thus, we have $(r, \theta, \phi)=(2, \dfrac{3\pi}{2},\dfrac{\pi}{2})$ b) Here, $\rho=\sqrt {(-1)^2+)(1)^2+(-\sqrt2)^2}=\sqrt {1+1+2}=2$ $\cos \phi =\dfrac{-\sqrt 2}{2}$ and $\phi=\cos^{-1}[\dfrac{-\sqrt 2}{2}]=\dfrac{3 \pi}{4}$; and $\cos \theta=\dfrac{-1}{2 \sin (\dfrac{3\pi}{4})} $ and $\theta=\cos^{-1}(\dfrac{-1}{2 \sin (\dfrac{3\pi}{4})})=\dfrac{3\pi}{4}$ Thus, we get $(r, \theta, \phi)=(2, \dfrac{3\pi}{4},\dfrac{3\pi}{4})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.