Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.6 Triple Integrals - 15.6 Exercises - Page 1078: 33

Answer

$\int_{0}^{1}\int_{\sqrt x}^{1} \int_0^{1-y} f(x,y,z)dzdydx\\ \int_{0}^{1}\int_{0}^{y^2} \int_0^{1-y} f(x,y,z)dzdxdy\\ \int_{0}^{1}\int_{0}^{1-\sqrt x} \int_{\sqrt x}^{1-z} f(x,y,z)dydzdx \\ \int_{0}^{1}\int_{0}^{(1-z)^2} \int_{\sqrt x}^{1-z} f(x,y,z)dydxdz\\\int_{0}^{1}\int_{0}^{1-z} \int_{0}^{y^2} f(x,y,z)dxdydz\\\int_{0}^{1}\int_{0}^{1-y} \int_{0}^{y^2} f(x,y,z)dxdzdy$

Work Step by Step

We are given that $z=1-y; y=\sqrt x$ a) when$x$ is from $0$ to $1$ and for $y$ it is from $\sqrt x$ to $1$ Thus, $\int_{0}^{1}\int_{\sqrt x}^{1} \int_0^{1-y} f(x,y,z)dzdydx$ and $\int_{0}^{1}\int_{0}^{y^2} \int_0^{1-y} f(x,y,z)dzdxdy$ b) when $x$ is from $0$ to $1$ and for $y$ it is from $1-z$ to $\sqrt x$ and for $z$ from $0$ to $1-\sqrt x$ Thus, $\int_{0}^{1}\int_{0}^{1-\sqrt x} \int_{\sqrt x}^{1-z} f(x,y,z)dydzdx$ and $\int_{0}^{1}\int_{0}^{(1-z)^2} \int_{\sqrt x}^{1-z} f(x,y,z)dydxdz$ c) when $x$ is from $0$ to $1$ and for $y$ it is from $0$ to $1-z$ and for $z$ from $0$ to $y^2$ Thus, $\int_{0}^{1}\int_{0}^{1-z} \int_{0}^{y^2} f(x,y,z)dxdydz$ and $\int_{0}^{1}\int_{0}^{1-y} \int_{0}^{y^2} f(x,y,z)dxdzdy$ Hence, The six different integrals are: $\int_{0}^{1}\int_{\sqrt x}^{1} \int_0^{1-y} f(x,y,z)dzdydx\\ \int_{0}^{1}\int_{0}^{y^2} \int_0^{1-y} f(x,y,z)dzdxdy\\ \int_{0}^{1}\int_{0}^{1-\sqrt x} \int_{\sqrt x}^{1-z} f(x,y,z)dydzdx \\ \int_{0}^{1}\int_{0}^{(1-z)^2} \int_{\sqrt x}^{1-z} f(x,y,z)dydxdz\\\int_{0}^{1}\int_{0}^{1-z} \int_{0}^{y^2} f(x,y,z)dxdydz\\\int_{0}^{1}\int_{0}^{1-y} \int_{0}^{y^2} f(x,y,z)dxdzdy$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.