Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.6 Triple Integrals - 15.6 Exercises - Page 1078: 17

Answer

$\dfrac{16 \pi}{3}$

Work Step by Step

Let us consider that $I=\iiint_E x dV$ $I=\iint_D[\int_{4y^2+4z^2}^4 x dx]=\iint_{D}[8-8(y^2+z^2)^2]dA$ In polar co-ordinates, we have $r^2=x^2+y^2 \implies r=\sqrt{x^2+y^2}$ and $x=r \cos \theta \\ y=r \sin \theta$ $\int_{0}^{2 \pi}\int_0^1[8-8(r^2)^2] r dr d\theta=\int_{0}^{2 \pi}\int_0^1[8-8r^4] r dr d\theta=\int_{0}^{2 \pi}\int_0^1[8r-8r^5] dr d\theta$ and $\int_{0}^{2 \pi}[4-\dfrac{4}{3}] d\theta=(\dfrac{8}{3}) \int_{0}^{2 \pi} d \theta$ Hence, $\iiint_E x dV=\dfrac{16 \pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.