Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - Chapter Review Exercises - Page 496: 9

Answer

$$\frac{67}{36} \pi$$

Work Step by Step

Given $$y=\frac{2}{3} x^{3 / 2}-\frac{1}{2} x^{1 / 2}, \quad[1,2]$$ \begin{align*} y'&= \sqrt{x}-\frac{1}{4 \sqrt{x}}\\ 1+y'^2&= 1+\left(\sqrt{x}-\frac{1}{4 \sqrt{x}}\right)^{2}\\ &=1+\left(x-\frac{1}{2}+\frac{1}{16 x}\right)\\ &=x+\frac{1}{2}+\frac{1}{16 x}\\ &=\left(\sqrt{x}+\frac{1}{4 \sqrt{x}}\right)^{2} \end{align*} Then the surface area is given by \begin{align*} S&=2\pi \int_{a}^{b} y\sqrt{1+y'^2}dx\\ & =2 \pi \int_{1}^{2}\left(\frac{2}{3} x^{3 / 2}-\frac{\sqrt{x}}{2}\right)\left(\sqrt{x}+\frac{1}{4 \sqrt{x}}\right) d x\\ &=2 \pi \int_{1}^{2}\left(\frac{2}{3} x^{2}+\frac{1}{6} x-\frac{1}{2} x-\frac{1}{8}\right) d x\\ &=\left.2 \pi\left(\frac{2 x^{3}}{9}-\frac{x^{2}}{6}-\frac{1}{8} x\right)\right|_{1} ^{2}\\ &=\frac{67}{36} \pi \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.