Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - Chapter Review Exercises - Page 496: 2

Answer

$$2\sinh(1)$$

Work Step by Step

Given $$y=e^{x / 2}+e^{-x / 2},\ \ \ \ [0,2] $$ Since $$y^{\prime}=\frac{e^{x / 2}}{2}-\frac{e^{-x / 2}}{2} $$ Then the arc length is given by \begin{aligned} s &=\int_{a}^{b} \sqrt{1+y'^{2}} d x \\ &= \int_{0}^{2} \sqrt{1+\left(e^{x / 2}+e^{-x / 2}\right)^2} d x \\ &= \int_{0}^{2} \sqrt{1+\frac{e^{x}}{4}-\frac{1}{2}+\frac{e^{-x}}{4}} d x \\ &= \int_{0}^{2} \sqrt{\frac{e^{x}}{4}+\frac{1}{2}+\frac{e^{-x}}{4}} d x \\ &=\int_{0}^{2} \sqrt{\left(\frac{e^{x / 2}}{2}+\frac{e^{-x / 2}}{2}\right)^{2}} d x \\ &=\int_{0}^{2}\left(\frac{e^{x / 2}}{2}+\frac{e^{-x / 2}}{2}\right) d x\\ &= \int_{0}^{2} \cosh \left(\frac{x}{2}\right) d x\\ &= 2 \sinh \left(\frac{x}{2}\right)\\ &= \left[2 \sinh \left(\frac{x}{2}\right)\right]_{0}^{2}\\ &=2\sinh(1) \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.