Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.6 Strategies for Integration - Preliminary Questions - Page 431: 7

Answer

Rewrite as: $$\sin ^{3} x \cos ^{2} x =\sin ^{2} x \cos ^{2} x \sin x=[ \cos ^{2} x - \cos ^{4} x ]\sin x $$ and substitute: $u=\cos x\ \ \ \ \ \ \ \ du =-\sin x$

Work Step by Step

We rewrite as: \begin{align*} \int \sin ^{3} x \cos ^{2} x d x&=\int \sin ^{2} x \cos ^{2} x \sin xd x\\ &= \int[1- \cos ^{2} x ] \cos ^{2} x \sin xd x\\ &=\int[ \cos ^{2} x - \cos ^{4} x ]\sin xd x \end{align*} and then use the substitution: $u=\cos x\ \ \ \ \ \ \ \ du =-\sin x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.