Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 6 - Applications of the Integral - 6.4 The Method of Cylindrical Shells - Exercises - Page 311: 27

Answer

a) $V$ = $\frac{576\pi}{7}$ b) $V$ = $\frac{96\pi}{5}$

Work Step by Step

a) x-ais disk method $V$ = $\pi\int_0^2(8-x^{3})^{2}dx$ $V$ = $\pi\int_0^2(64-16x^{3}+x^{6})dx$ $V$ = $\pi(64x-4x^{4}+\frac{1}{7}x^{7})|_0^2$ $V$ = $\frac{576\pi}{7}$ shell method $V$ = $2\pi\int_0^{8}y(8-y)^{\frac{1}{3}}dy$ let $u$ = $8-y$ then $du$ = $-dy$ $V$ = $2\pi\int_0^{8}(8-u)(u)^{\frac{1}{3}}du$ $V$ = $2\pi\int_0^{8}(8u^{\frac{1}{3}}-u^{\frac{4}{3}})du$ $V$ = $2\pi(6u^{\frac{4}{3}}-\frac{3}{7}u^{\frac{7}{3}})|_0^8$ $V$ = $\frac{576\pi}{7}$ b) y axis disk method $V$ = $\pi\int_0^8(8-y)^{\frac{2}{3}}dy$ $V$ = $-\frac{3\pi}{5}(8-y)^{\frac{5}{3}}|_0^8$ $V$ = $\frac{96\pi}{5}$ shell method $V$ = $2\pi\int_0^{2}x(8-x^{3})dx$ $V$ = $2\pi(4x^{2}-\frac{1}{5}x^{5})|_0^2$ $V$ = $\frac{96\pi}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.