Answer
$\dfrac{ 281 \pi}{80}$
Work Step by Step
The shell method to compute the volume of a region: The volume of a solid obtained by rotating the region under $y=f(x)$ over an interval $[m,n]$ about the y-axis is given by:
$V=2 \pi \int_{m}^{n} (Radius) \times (height \ of \ the \ shell) \ dy=2 \pi \int_{m}^{n} (x) \times f(x) \ dx$
Now, $V=2\pi \int_{-3}^{-1} (4-x) (x^{-4}) \ dx\\= 2\pi \int_{-3}^{-1} (4x^{-4} -x^{-3}) \ dx \\=2 \pi [\dfrac{-4}{3x^3} +\dfrac{1}{2x^2}]_{-3}^{-1} \\= 2\pi (\dfrac{4}{3}+\dfrac{1}{2}-\dfrac{4}{81}-\dfrac{1}{18}) \\=\dfrac{ 281 \pi}{80}$