Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.1 Approximating and Computing Area - Exercises - Page 235: 28

Answer

$$\sum_{i=1}^{n+1}\sin \left(\frac{\pi}{i}\right)$$

Work Step by Step

Given $$\sin (\pi)+\sin \left(\frac{\pi}{2}\right)+\sin \left(\frac{\pi}{3}\right)+\ldots+\sin \left(\frac{\pi}{n+1}\right)$$ Since the first term is $ \sin (\pi)$ and the last is $\sin \left(\frac{\pi}{n+1}\right)$, then $$\sin (\pi)+\sin \left(\frac{\pi}{2}\right)+\sin \left(\frac{\pi}{3}\right)+\ldots+\sin \left(\frac{\pi}{n+1}\right)=\sum_{i=1}^{n+1}\sin \left(\frac{\pi}{i}\right)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.