Answer
$$87$$
Work Step by Step
Given $$ f(x)=4 x+3, \quad[5,8]$$
Since $n= 6$, $\Delta x=\dfrac{1}{2}$ and
$$ x_0= 5,\ x_1=5.5,\ x_2=6,\ x_3=6.5,\ x_4=7,\ x_5=7.5,\ x_6=8$$
Then
\begin{align*}
M_n&=\left[f\left(\frac{x_{0}+x_{1}}{2}\right)+\cdots+f\left(\frac{x_{N-1}+x_{N}}{2}\right)\right] \Delta x\\
M_6&= \left[f(5.25)+f(5.75)+f(6.25)+f(6.75)+f(7.25)+f(7.75) \right] \Delta x\\
&= [ 24+26+28+30+32+34]\frac{1}{2}\\
&=87
\end{align*}