Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.7 Newton's Method - Exercises - Page 219: 7

Answer

\begin{aligned} x_{1}& \approx −1.3309644 \\ x_{2}& \approx −1.32827 \\ x_{3}& \approx −1.328268 \end{aligned}

Work Step by Step

Given $$ y=x^{3}+2 x+5 $$ Since $$ x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$$ Then \begin{align*} x_{n+1}&=x_{n}-\frac{x_{n}^{3}+2 x_{n}+5}{3 x_{n}^{2}+2}\\ &=\frac{2x_{n}^{3}-5}{3 x_{n}^{2}+2} \end{align*} from the given figure, take $x_0= -1.4 $ \begin{aligned} x_{1}&=\frac{2x_{0}^{3}-5}{3 x_{0}^{2}+2}= \frac{2(-1.4)^{3}-5}{3(-1.4)^{2}+2}\approx −1.3309644 \\ x_{2}&=\frac{2x_{1}^{3}-5}{3 x_{1}^{2}+2}= \frac{2(−1.3309)^{3}-5}{3(−1.3309)^{2}+2} \approx −1.32827 \\ x_{3}&=\frac{2x_{2}^{3}-5}{3 x_{2}^{2}+2} = \frac{2( −1.32827)^{3}-5}{3( −1.32827)^{2}+2} \approx −1.328268 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.