Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.7 Newton's Method - Exercises - Page 219: 1

Answer

\begin{align*} x_1 & = 2.5 \\ x_2& = 2.45\\ x_3& = 2.44948 \end{align*}

Work Step by Step

Given $$ f(x)=x^{2}-6, \quad x_{0}=2$$ Since $$ x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$$ Then \begin{align*} x_{n+1}&= x_n -\frac{x_n^{2}-6}{2x_n} \end{align*} Hence \begin{align*} x_1 &= x_0 -\frac{x_0^{2}-6}{2x_0}=2-\frac{4-6}{4}= 2.5 \\ x_2&= x_1 -\frac{x_1^{2}-6}{2x_1}=2.5-\frac{(2.5)^2-6}{2(2.5)}= 2.45\\ x_3&= x_2 -\frac{x_2^{2}-6}{2x_2}=2.45-\frac{(2.45)^2-6}{2(2.45)}= 2.44948 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.