Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.6 Trigonometric Functions - Exercises - Page 140: 44

Answer

$y^{(157)}=\cos{x}$

Work Step by Step

Firstly calculate the first four derivatives of $y=\sin{x}$. $y'=\cos{x}$ $y''=-\sin{x}$ $y'''=-\cos{x}$ $y^{(4)}=\sin(x)$ We see that after differentiating four times we get the same function. So, $y'=y^{(5)}=y^{(9)}=y^{(4\times n+1)}$ where $n$ is any natural number. Similarly, $y''=y^{(4\times n+2)}$, $y'''=y^{(4\times n+3)}$ and $y^{(4)}=y^{(4\times n+4)}=y^{(4\times (n+1))}$, where $n$ is a natural number. Now, divide $157$ by $4$. we get, $157=4\times39+1$ So, we get $y^{(157)}=y^{(4\times39+1)}=y^{(4\times n+1)}$ where $n=39$. Now subtitute $y^{(4\times n+1)}=y'$. We get, $y^{(157)}=y'$ Now substitute $y'=\cos{x}$. We get, $y^{(157)}=\cos{x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.