Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 907: 51

Answer

We prove that ${\rm{Jac}}\left( {{G^{ - 1}}} \right) = {\rm{Jac}}{\left( G \right)^{ - 1}}$

Work Step by Step

Let $I$ be the identity map such that $I\left( {u,v} \right) = \left( {u,v} \right)$. So, $x=u$, $y=v$. Evaluate the Jacobian of $I$: ${\rm{Jac}}\left( I \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial x}}{{\partial u}}}&{\frac{{\partial x}}{{\partial v}}}\\ {\frac{{\partial y}}{{\partial u}}}&{\frac{{\partial y}}{{\partial v}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right| = 1$ Suppose ${G^{ - 1}}$ is the inverse of the mapping $G$. So, $G \circ {G^{ - 1}} = {G^{ - 1}} \circ G = I$. Evaluate the Jacobian: ${\rm{Jac}}\left( {G \circ {G^{ - 1}}} \right) = {\rm{Jac}}\left( {{G^{ - 1}} \circ G} \right) = {\rm{Jac}}\left( I \right) = 1$ Using the result in Exercise 50: ${\rm{Jac}}\left( G \right){\rm{Jac}}\left( {{G^{ - 1}}} \right) = 1$ ${\rm{Jac}}\left( {{G^{ - 1}}} \right) = \frac{1}{{{\rm{Jac}}\left( G \right)}}$ Hence, ${\rm{Jac}}\left( {{G^{ - 1}}} \right) = {\rm{Jac}}{\left( G \right)^{ - 1}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.