Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 907: 49

Answer

We prove: $\det \left( {AB} \right) = \det \left( A \right)\det \left( B \right)$

Work Step by Step

Let the matrices $A$ and $B$ be given by: $A = \left( {\begin{array}{*{20}{c}} a&b\\ c&d \end{array}} \right)$, ${\ \ \ \ \ }$ $B = \left( {\begin{array}{*{20}{c}} {a'}&{b'}\\ {c'}&{d'} \end{array}} \right)$ So, $AB = \left( {\begin{array}{*{20}{c}} a&b\\ c&d \end{array}} \right)\left( {\begin{array}{*{20}{c}} {a'}&{b'}\\ {c'}&{d'} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {aa' + bc'}&{ab' + bd'}\\ {ca' + dc'}&{cb' + dd'} \end{array}} \right)$ By Eq. (1) in Section 13.4, the determinant of $AB$ is $\det \left( {AB} \right) = \left( {aa' + bc'} \right)\left( {cb' + dd'} \right) - \left( {ca' + dc'} \right)\left( {ab' + bd'} \right)$ $ = aca'b' + bcb'c' + ada'd' + bdc'd'$ ${\ \ \ }$ $ - aca'b' - adb'c' - bca'd' - bdc'd'$ After canceling terms with opposite signs, we get $\det \left( {AB} \right) = bcb'c' + ada'd' - adb'c' - bca'd'$ $ = bc\left( {b'c' - a'd'} \right) + ad\left( {a'd' - b'c'} \right)$ $ = ad\left( {a'd' - b'c'} \right) - bc\left( {a'd' - b'c'} \right)$ $ = \left( {ad - bc} \right)\left( {a'd' - b'c'} \right)$ Since $\det A = ad - bc$ and $\det B = a'd' - b'c'$, hence $\det \left( {AB} \right) = \det \left( A \right)\det \left( B \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.