Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 846: 29

Answer

$$123.8667$$

Work Step by Step

\begin{aligned} \int_{0}^{4} \int_{0}^{9} \sqrt{x+4 y} d x d y &=\left.\int_{0}^{4} \frac{2}{3}(x+4 y)^{3 / 2}\right|_{x=0} ^{9} d y\\ &=\int_{0}^{4} \frac{2}{3}\left((9+4 y)^{3 / 2}-(4 y)^{3 / 2}\right) d y \\ &=\left.\frac{2}{3}\left(\frac{2}{5 \cdot 4}(9+4 y)^{5 / 2}-\frac{2}{5 \cdot 4}(4 y)^{5 / 2}\right)\right|_{0} ^{4} \\ &=\frac{1}{15}\left(5^{5}-4^{5}\right)-\frac{1}{15}\left(3^{5}-0\right) \approx 123.8667 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.