Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 834: 56

Answer

We show that there is a constant $\mu $ such that the maximum of $S$ subject to the constraints occurs for ${x_i} = {A^{ - 1}}{{\rm{e}}^{\mu {E_i}}}$ for $i = 1,2,...n$, where $A = {N^{ - 1}}\left( {{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}} \right)$.

Work Step by Step

Our task is to maximize $S\left( {{x_1},...,{x_n}} \right) = {x_1}\ln {x_1} + {x_2}\ln {x_2} + \cdot\cdot\cdot + {x_n}\ln {x_n}$ subject to two constraints: $g\left( {{x_1},...,{x_n}} \right) = {x_1} + {x_2} + \cdot\cdot\cdot + {x_n} - N = 0$ $h\left( {{x_1},...,{x_n}} \right) = {E_1}{x_1} + {E_2}{x_2} + \cdot\cdot\cdot + {E_n}{x_n} - E = 0$, where $E$, ${E_1}$, ${E_2}$, ..., ${E_n}$ and $N$ are constants. The Lagrange condition is $\nabla S = \lambda \nabla g + \mu \nabla h$ So, $\left( {\ln {x_1} + 1,\ln {x_2} + 1,...,\ln {x_n} + 1} \right) = \lambda \left( {1,1,...,1} \right) + \mu \left( {{E_1},{E_2},...,{E_n}} \right)$ From the Lagrange condition we obtain $n$ equations: $\ln {x_1} + 1 = \lambda + \mu {E_1}$, $\ln {x_2} + 1 = \lambda + \mu {E_2}$, $\cdot\cdot\cdot$, $\ln {x_n} + 1 = \lambda + \mu {E_n}$ Or, $\lambda = 1 + \ln {x_1} - \mu {E_1}$, $\lambda = 1 + \ln {x_2} - \mu {E_2}$, $\cdot\cdot\cdot$, $\lambda = 1 + \ln {x_n} - \mu {E_n}$ So, $\lambda = 1 + \ln {x_1} - \mu {E_1} = 1 + \ln {x_2} - \mu {E_2} = \cdot\cdot\cdot = 1 + \ln {x_n} - \mu {E_n}$ $\ln {x_1} - \mu {E_1} = \ln {x_2} - \mu {E_2} = \cdot\cdot\cdot = \ln {x_n} - \mu {E_n}$ It follows that $\begin{array}{*{20}{c}} {\ln {x_1} - \mu {E_1} = \ln {x_2} - \mu {E_2}}\\ {\ln {x_1} - \mu {E_1} = \ln {x_3} - \mu {E_3}}\\ {\cdot\cdot\cdot}\\ {\ln {x_1} - \mu {E_1} = \ln {x_n} - \mu {E_n}} \end{array}$ $ \Rightarrow $ $\begin{array}{*{20}{c}} {\ln {x_1} - \ln {x_2} = \mu \left( {{E_1} - {E_2}} \right)}\\ {\ln {x_1} - \ln {x_3} = \mu \left( {{E_1} - {E_3}} \right)}\\ {\cdot\cdot\cdot}\\ {\ln {x_1} - \ln {x_n} = \mu \left( {{E_1} - {E_n}} \right)} \end{array}$ So, $\begin{array}{*{20}{c}} {\ln \frac{{{x_1}}}{{{x_2}}} = \mu \left( {{E_1} - {E_2}} \right)}\\ {\ln \frac{{{x_1}}}{{{x_3}}} = \mu \left( {{E_1} - {E_3}} \right)}\\ {\cdot\cdot\cdot}\\ {\ln \frac{{{x_1}}}{{{x_n}}} = \mu \left( {{E_1} - {E_n}} \right)} \end{array}$ $ \Rightarrow $ $\begin{array}{*{20}{c}} {\frac{{{x_1}}}{{{x_2}}} = {{\rm{e}}^{\mu \left( {{E_1} - {E_2}} \right)}}}\\ {\frac{{{x_1}}}{{{x_3}}} = {{\rm{e}}^{\mu \left( {{E_1} - {E_3}} \right)}}}\\ {\cdot\cdot\cdot}\\ {\frac{{{x_1}}}{{{x_n}}} = {{\rm{e}}^{\mu \left( {{E_1} - {E_n}} \right)}}} \end{array}$ From the $2$nd, the $3$rd, ... and the $n$th equation above we obtain (1) ${\ \ \ \ }$ ${x_2} = {x_1}{{\rm{e}}^{\mu \left( {{E_2} - {E_1}} \right)}}$, ${\ \ \ }$ ${x_3} = {x_1}{{\rm{e}}^{\mu \left( {{E_3} - {E_1}} \right)}}$, $\cdot\cdot\cdot$, ${x_n} = {x_1}{{\rm{e}}^{\mu \left( {{E_n} - {E_1}} \right)}}$ Substituting ${x_2} = {x_1}{{\rm{e}}^{\mu \left( {{E_2} - {E_1}} \right)}}$, ${x_3} = {x_1}{{\rm{e}}^{\mu \left( {{E_3} - {E_1}} \right)}}$, ..., and ${x_n} = {x_1}{{\rm{e}}^{\mu \left( {{E_n} - {E_1}} \right)}}$ in the constraint $g$ gives ${x_1} + {x_1}{{\rm{e}}^{\mu \left( {{E_2} - {E_1}} \right)}} + {x_1}{{\rm{e}}^{\mu \left( {{E_3} - {E_1}} \right)}} + \cdot\cdot\cdot + {x_1}{{\rm{e}}^{\mu \left( {{E_n} - {E_1}} \right)}} - N = 0$ ${x_1}\left( {1 + {{\rm{e}}^{\mu \left( {{E_2} - {E_1}} \right)}} + {{\rm{e}}^{\mu \left( {{E_3} - {E_1}} \right)}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu \left( {{E_n} - {E_1}} \right)}}} \right) = N$ ${x_1} = \frac{N}{{1 + {{\rm{e}}^{\mu \left( {{E_2} - {E_1}} \right)}} + {{\rm{e}}^{\mu \left( {{E_3} - {E_1}} \right)}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu \left( {{E_n} - {E_1}} \right)}}}}$ Multiplying the right-hand side with the identity $\frac{{{{\rm{e}}^{\mu {E_1}}}}}{{{{\rm{e}}^{\mu {E_1}}}}} = 1$ gives ${x_1} = \frac{{N{{\rm{e}}^{\mu {E_1}}}}}{{{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}}}$ Using ${x_2} = {x_1}{{\rm{e}}^{\mu \left( {{E_2} - {E_1}} \right)}}$, ${x_3} = {x_1}{{\rm{e}}^{\mu \left( {{E_3} - {E_1}} \right)}}$, ..., and ${x_n} = {x_1}{{\rm{e}}^{\mu \left( {{E_n} - {E_1}} \right)}}$ we obtain ${x_2} = \frac{{N{{\rm{e}}^{\mu {E_1}}}}}{{{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}}}{{\rm{e}}^{\mu \left( {{E_2} - {E_1}} \right)}} = \frac{{N{{\rm{e}}^{\mu {E_2}}}}}{{{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}}}$ ${x_3} = \frac{{N{{\rm{e}}^{\mu {E_1}}}}}{{{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}}}{{\rm{e}}^{\mu \left( {{E_3} - {E_1}} \right)}} = \frac{{N{{\rm{e}}^{\mu {E_3}}}}}{{{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}}}$ $\cdot\cdot\cdot$ ${x_n} = \frac{{N{{\rm{e}}^{\mu {E_1}}}}}{{{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}}}{{\rm{e}}^{\mu \left( {{E_n} - {E_1}} \right)}} = \frac{{N{{\rm{e}}^{\mu {E_n}}}}}{{{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}}}$ So, the critical point is $\left( {{x_1},{x_2},...,{x_n}} \right) = $ $\left( {\frac{{N{{\rm{e}}^{\mu {E_1}}}}}{{{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}}},\frac{{N{{\rm{e}}^{\mu {E_2}}}}}{{{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}}},...,\frac{{N{{\rm{e}}^{\mu {E_n}}}}}{{{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}}}} \right)$ Write $A = \frac{{{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}}}{N}$. So, ${A^{ - 1}} = \frac{N}{{{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}}}$. Thus, $\left( {{x_1},{x_2},...,{x_n}} \right) = \left( {{A^{ - 1}}{{\rm{e}}^{\mu {E_1}}},{A^{ - 1}}{{\rm{e}}^{\mu {E_2}}},...,{A^{ - 1}}{{\rm{e}}^{\mu {E_n}}}} \right)$ Hence, there is a constant $\mu $ such that ${x_i} = {A^{ - 1}}{{\rm{e}}^{\mu {E_i}}}$ for $i = 1,2,...n$, where $A = {N^{ - 1}}\left( {{{\rm{e}}^{\mu {E_1}}} + {{\rm{e}}^{\mu {E_2}}} + \cdot\cdot\cdot + {{\rm{e}}^{\mu {E_n}}}} \right)$. Since the domain of logarithmic function are positive numbers, the function $S$ is increasing. Thus, we conclude that the maximum of $S\left( {{x_1},{x_2},...,{x_n}} \right)$ subject to the two constraints occurs at the critical point: $\left( {{x_1},{x_2},...,{x_n}} \right) = \left( {{A^{ - 1}}{{\rm{e}}^{\mu {E_1}}},{A^{ - 1}}{{\rm{e}}^{\mu {E_2}}},...,{A^{ - 1}}{{\rm{e}}^{\mu {E_n}}}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.