Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 834: 54

Answer

First, we show that the maximum of $f\left( {{x_1},...,{x_n}} \right) = {x_1} + {x_2}\cdot\cdot\cdot + {x_n}$ subject to ${x_1}^2 + {x_2}^2 + \cdot\cdot\cdot + {x_n}^2 = {B^2}$ is $\sqrt n B$. Using this result we conclude that $\left| {{a_1}} \right| + \left| {{a_2}\left| { + \cdot\cdot\cdot + } \right|{a_n}} \right| \le \sqrt n {\left( {{a_1}^2 + {a_2}^2 + \cdot\cdot\cdot + {a_n}^2} \right)^{1/2}}$ for all numbers ${a_1},{a_2},...,{a_n}$.

Work Step by Step

We are given a function $f\left( {{x_1},...,{x_n}} \right) = {x_1} + {x_2}\cdot\cdot\cdot + {x_n}$ subject to the constraints $g\left( {{x_1},...,{x_n}} \right) = {x_1}^2 + {x_2}^2 + \cdot\cdot\cdot + {x_n}^2 - {B^2} = 0$. Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields (1) ${\ \ }$ $\left( {{x_2} + {x_3} + \cdot\cdot\cdot{x_n},{x_1} + {x_3}\cdot\cdot\cdot + {x_n},...,{x_1} + {x_2}\cdot\cdot\cdot{x_{n - 1}}} \right) = \lambda \left( {1,1,...,1} \right)$ So, the Lagrange equations are $\begin{array}{*{20}{c}} {{x_2} + {x_3} + \cdot\cdot\cdot + {x_n} = \lambda }\\ {{x_1} + {x_3}\cdot\cdot\cdot + {x_n} = \lambda }\\ {...}\\ {{x_1} + {x_2} + \cdot\cdot\cdot + {x_{n - 1}} = \lambda } \end{array}$ Thus, $\lambda = {x_2} + {x_3} + \cdot\cdot\cdot + {x_n} = {x_1} + {x_3}\cdot\cdot\cdot + {x_n} = ... = {x_1} + {x_2} + \cdot\cdot\cdot + {x_{n - 1}}$ We may write $\begin{array}{*{20}{c}} {{x_2} + {x_3} + \cdot\cdot\cdot + {x_n} = {x_1} + {x_3} + \cdot\cdot\cdot + {x_n}}\\ {{x_1} + {x_3} + \cdot\cdot\cdot + {x_n} = {x_1} + {x_2} + \cdot\cdot\cdot + {x_n}}\\ {\cdot\cdot\cdot}\\ {{x_1} + {x_2} + \cdot\cdot\cdot + {x_n} = {x_1} + {x_2} + \cdot\cdot\cdot + {x_{n - 1}}} \end{array}$ Subtracting common terms on both sides we get $\begin{array}{*{20}{c}} {{x_2} = {x_1}}\\ {{x_3} = {x_2}}\\ {...}\\ {{x_n} = {x_{n - 1}}} \end{array}$ Thus, ${x_1} = {x_2} = \cdot\cdot\cdot = {x_n}$. Using the constraints ${x_1}^2 + {x_2}^2 + \cdot\cdot\cdot + {x_n}^2 = {B^2}$, we obtain the solution $n{x_1}^2 = n{x_2}^2 = \cdot\cdot\cdot = n{x_n}^2 = {B^2}$ $\left| {{x_1}} \right| = \left| {{x_2}} \right| = \cdot\cdot\cdot = \frac{B}{{\sqrt n }}$ So, the critical point is $\left( {{x_1},{x_2},...,{x_n}} \right) = \left( {\frac{B}{{\sqrt n }},\frac{B}{{\sqrt n }},...,\frac{B}{{\sqrt n }}} \right)$. The extreme value corresponding to $\left( {\frac{B}{{\sqrt n }},\frac{B}{{\sqrt n }},...,\frac{B}{{\sqrt n }}} \right)$ is $f\left( {\frac{B}{{\sqrt n }},\frac{B}{{\sqrt n }},...,\frac{B}{{\sqrt n }}} \right) = n\frac{B}{{\sqrt n }} = \sqrt n B$ For positive numbers, ${x_1},{x_2},...,{x_n} > 0$, the function $f\left( {{x_1},...,{x_n}} \right) = {x_1} + {x_2}\cdot\cdot\cdot + {x_n}$ is increasing. So, we conclude that the maximum of $f\left( {{x_1},...,{x_n}} \right)$ subject to the budget constraint is equal to $\sqrt n B$. Hence, the maximum of $f\left( {{x_1},...,{x_n}} \right) = {x_1} + {x_2}\cdot\cdot\cdot + {x_n}$ subject to ${x_1}^2 + {x_2}^2 + \cdot\cdot\cdot + {x_n}^2 = {B^2}$ is $\sqrt n B$. Next, we use this result to conclude that $\left| {{a_1}} \right| + \left| {{a_2}\left| { + \cdot\cdot\cdot + } \right|{a_n}} \right| \le \sqrt n {\left( {{a_1}^2 + {a_2}^2 + \cdot\cdot\cdot + {a_n}^2} \right)^{1/2}}$ for all numbers ${a_1},{a_2},...,{a_n}$. Consider some numbers ${a_1},{a_2},...,{a_n}$. Since the maximum of $f\left( {{x_1},...,{x_n}} \right) = {x_1} + {x_2} + \cdot\cdot\cdot + {x_n}$ is $\sqrt n B$, then $\left| {{a_1}} \right| + \left| {{a_2}\left| { + \cdot\cdot\cdot + } \right|{a_n}} \right| \le \sqrt n B$ Using ${a_1}^2 + {a_2}^2 + \cdot\cdot\cdot + {a_n}^2 = {B^2}$, we obtain $\left| {{a_1}} \right| + \left| {{a_2}\left| { + \cdot\cdot\cdot + } \right|{a_n}} \right| \le \sqrt n {\left( {{a_1}^2 + {a_2}^2 + \cdot\cdot\cdot + {a_n}^2} \right)^{1/2}}$ Since ${a_1},{a_2},...,{a_n}$ are arbitrary, it applies to all numbers ${a_1},{a_2},...,{a_n}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.