Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 832: 26

Answer

We show that the maximum value of $f\left( {x,y} \right) = {x^2}{y^3}$ on the unit circle ${x^2} + {y^2} = 1$ is $\frac{6}{{25}}\sqrt {\frac{3}{5}} $.

Work Step by Step

We are given $f\left( {x,y} \right) = {x^2}{y^3}$. Since the unit circle is ${x^2} + {y^2} = 1$, the constraint is $g\left( {x,y} \right) = {x^2} + {y^2} - 1 = 0$. Our task is to find the maximum value of $f$ subject to the constraint $g\left( {x,y} \right) = {x^2} + {y^2} - 1 = 0$. Step 1. Write out the Lagrange equations Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields $\left( {2x{y^3},3{x^2}{y^2}} \right) = \lambda \left( {2x,2y} \right)$ So, the Lagrange equations are (1) ${\ \ \ \ }$ $2x{y^3} = 2\lambda x$, ${\ \ \ }$ $3{x^2}{y^2} = 2\lambda y$ Step 2. Solve for $\lambda$ in terms of $x$ and $y$ Since $\left( {0,0} \right)$ does not satisfy the constraint, we have the following cases: Case 1. $x=0$, $y \ne 0$ Substituting $x=0$ in the constraint $g\left( {x,y} \right) = {x^2} + {y^2} - 1 = 0$ gives $y = \pm 1$. So, the critical points are $\left( {0,1} \right)$, $\left( {0, - 1} \right)$. Case 2. $x \ne 0$, $y=0$ Substituting $y=0$ in the constraint $g\left( {x,y} \right) = {x^2} + {y^2} - 1 = 0$ gives $x = \pm 1$. So, the critical points are $\left( {1,0} \right)$, $\left( { - 1,0} \right)$. Case 3. $x \ne 0$, $y \ne 0$ In this case $\lambda \ne 0$. From equation (1) we obtain $\lambda = {y^3} = \frac{3}{2}{x^2}y$ ${y^2} = \frac{3}{2}{x^2}$ $y = \pm \sqrt {\frac{3}{2}} x$ Step 3. Solve for $x$ and $y$ using the constraint In Step 2, we obtain $y = \pm \sqrt {\frac{3}{2}} x$. Substituting it in the constraint gives ${x^2} + {y^2} - 1 = 0$ ${x^2} + \frac{3}{2}{x^2} = 1$ So, $x = \pm \sqrt {\frac{2}{5}} $. Using $y = \pm \sqrt {\frac{3}{2}} x$, we obtain the critical points: $\left( {\sqrt {\frac{2}{5}} ,\sqrt {\frac{3}{5}} } \right)$, $\left( {\sqrt {\frac{2}{5}} , - \sqrt {\frac{3}{5}} } \right)$, $\left( { - \sqrt {\frac{2}{5}} ,\sqrt {\frac{3}{5}} } \right)$, $\left( { - \sqrt {\frac{2}{5}} , - \sqrt {\frac{3}{5}} } \right)$. Step 4. Calculate the critical values We evaluate the extreme values at the critical points and list them in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical{\ }point}}}&{f\left( {x,y} \right)}\\ {\left( {0,1} \right)}&0\\ {\left( {0, - 1} \right)}&0\\ {\left( {1,0} \right)}&0\\ {\left( { - 1,0} \right)}&0\\ {\left( {\sqrt {\frac{2}{5}} ,\sqrt {\frac{3}{5}} } \right)}&{\frac{6}{{25}}\sqrt {\frac{3}{5}} }\\ {\left( {\sqrt {\frac{2}{5}} , - \sqrt {\frac{3}{5}} } \right)}&{ - \frac{6}{{25}}\sqrt {\frac{3}{5}} }\\ {\left( { - \sqrt {\frac{2}{5}} ,\sqrt {\frac{3}{5}} } \right)}&{\frac{6}{{25}}\sqrt {\frac{3}{5}} }\\ {\left( { - \sqrt {\frac{2}{5}} , - \sqrt {\frac{3}{5}} } \right)}&{ - \frac{6}{{25}}\sqrt {\frac{3}{5}} } \end{array}$ From the results in this table we conclude that the minimum of $f$ is $ - \frac{6}{{25}}\sqrt {\frac{3}{5}} $ and the maximum value of $f$ subject to the unit circle ${x^2} + {y^2} = 1$ is $\frac{6}{{25}}\sqrt {\frac{3}{5}} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.