Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 832: 22

Answer

The maximum area of a rectangle inscribed in the ellipse is $2a b$.

Work Step by Step

Using the information in Figure 16, the area of the rectangle is given by $f\left( {x,y} \right) = \left( {2x} \right)\left( {2y} \right) = 4xy$. Our task is to maximize the function $f\left( {x,y} \right)$ subject to the constraint $g\left( {x,y} \right) = \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - 1 = 0$. Step 1. Write out the Lagrange equations Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields $\left( {4y,4x} \right) = \lambda \left( {\frac{{2x}}{{{a^2}}},\frac{{2y}}{{{b^2}}}} \right)$ So, the Lagrange equations are (1) ${\ \ \ \ }$ $4y = \frac{{2\lambda x}}{{{a^2}}}$, ${\ \ \ }$ $4x = \frac{{2\lambda y}}{{{b^2}}}$ Step 2. Solve for $\lambda$ in terms of $x$ and $y$ Since $\left( {0,0} \right)$ does not satisfy the constraint, we may assume that $x \ne 0$ and $y \ne 0$. Thus, $\lambda = \frac{{2y{a^2}}}{x} = \frac{{2x{b^2}}}{y}$ Step 3. Solve for $x$ and $y$ using the constraint From Step 2 we obtain ${y^2} = \frac{{{b^2}}}{{{a^2}}}{x^2}$. So, $y = \pm \frac{b}{a}x$. Substituting it in the constraint gives $\frac{{{x^2}}}{{{a^2}}} + \frac{{{x^2}}}{{{a^2}}} - 1 = 0$ $\frac{{2{x^2}}}{{{a^2}}} = 1$ So, $x = \pm \frac{a}{{\sqrt 2 }}$. Using $y = \pm \frac{b}{a}x$ we obtain the critical points: $\left( {\frac{a}{{\sqrt 2 }},\frac{b}{{\sqrt 2 }}} \right)$, $\left( {\frac{a}{{\sqrt 2 }}, - \frac{b}{{\sqrt 2 }}} \right)$, $\left( { - \frac{a}{{\sqrt 2 }},\frac{b}{{\sqrt 2 }}} \right)$, $\left( { - \frac{a}{{\sqrt 2 }}, - \frac{b}{{\sqrt 2 }}} \right)$. Step 4. Calculate the critical values We evaluate the extreme values and list them in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical{\ }point}}}&{f\left( {x,y} \right)}\\ {\left( {\frac{a}{{\sqrt 2 }},\frac{b}{{\sqrt 2 }}} \right)}&{2ab}\\ {\left( {\frac{a}{{\sqrt 2 }}, - \frac{b}{{\sqrt 2 }}} \right)}&{ - 2ab}\\ {\left( { - \frac{a}{{\sqrt 2 }},\frac{b}{{\sqrt 2 }}} \right)}&{ - 2ab}\\ {\left( { - \frac{a}{{\sqrt 2 }}, - \frac{b}{{\sqrt 2 }}} \right)}&{2ab} \end{array}$ From the results in this table, we conclude that the maximum area of a rectangle inscribed in the ellipse is $2a b$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.