Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 823: 39

Answer

The global minimum is $f\left( {0,0} \right) = 0$ and the global maximum is $f\left( {1,1} \right) = 3$.

Work Step by Step

We have $f\left( {x,y} \right) = {x^2} + 2{y^2}$ and the domain is the square $0 \le x \le 1$, $0 \le y \le 1$. Step 1. Find the critical points on the domain and evaluate $f$ at these points The partial derivatives are ${f_x} = 2x$, ${\ \ \ \ }$ ${f_y} = 4y$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$. So, there is only one critical point at $\left( {0,0} \right)$. The extreme value of $f$ is $f\left( {0,0} \right) = 0$. Step 2. Check the boundaries We restrict the function $f$ along the edges and find the minimum and maximum values. The results are given in the following table: $\begin{array}{*{20}{c}} {}\\ {{\rm{Edge}}}\\ {Bottom:y = 0,0 \le x \le 1}\\ {Top:y = 1,0 \le x \le 1}\\ {Left:x = 0,0 \le y \le 1}\\ {Right:x = 1,0 \le y \le 1} \end{array}\begin{array}{*{20}{c}} {{\rm{Restriction{\ }of}}}&{{\rm{Minimum{\ }of}}}&{{\rm{Maximum{\ }of}}}\\ {f\left( {x,y} \right){\rm{to{\ }Edge}}}&{f\left( {x,y} \right){\rm{on{\ }Edge}}}&{f\left( {x,y} \right){\rm{on{\ }Edge}}}\\ {g\left( x \right) = f\left( {x,0} \right) = {x^2}}&0&1\\ {h\left( x \right) = f\left( {x,1} \right) = {x^2} + 2}&2&3\\ {m\left( y \right) = f\left( {0,y} \right) = 2{y^2}}&0&2\\ {n\left( y \right) = f\left( {1,y} \right) = 1 + 2{y^2}}&1&3 \end{array}$ Step 3. Compare the results Comparing the value of $f$ in Step 1 and the values in this table we obtain the global minimum $f\left( {0,0} \right) = 0$ and the global maximum $f\left( {1,1} \right) = 3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.