Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 823: 37

Answer

The global minimum is $f\left( {0,1} \right) = - 2$ and the global maximum is $f\left( {1,0} \right) = 1$.

Work Step by Step

We have $f\left( {x,y} \right) = {x^3} - 2y$ and the domain is the square $0 \le x \le 1$, $0 \le y \le 1$. Step 1. Find the critical points on the domain and evaluate $f$ at these points The partial derivatives are ${f_x} = 3{x^2}$, ${\ \ \ }$ ${f_y} = - 2$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$. Since ${f_y} = - 2$, it will never becomes zero. Hence, there is no critical point of $f$. Step 2. Check the boundaries We restrict the function $f$ along the edges and find the minimum and maximum values. The results are given in the following table: $\begin{array}{*{20}{c}} {}&{{\rm{Restriction{\ } of}}}\\ {{\rm{Edge}}}&{f\left( {x,y} \right){\rm{ to{\ } Edge}}}\\ {Bottom:y = 0,0 \le x \le 1}&{g\left( x \right) = f\left( {x,0} \right) = {x^3}}\\ {Top:y = 1,0 \le x \le 1}&{h\left( x \right) = f\left( {x,1} \right) = {x^3} - 2}\\ {Left:x = 0,0 \le y \le 1}&{m\left( y \right) = f\left( {0,y} \right) = - 2y}\\ {Right:x = 1,0 \le y \le 1}&{n\left( y \right) = f\left( {1,y} \right) = 1 - 2y} \end{array}\begin{array}{*{20}{c}} {{\rm{Minimum{\ } of}}}&{{\rm{Maximum{\ } of}}}\\ {f\left( {x,y} \right){\rm{ on{\ } Edge}}}&{f\left( {x,y} \right){\rm{on{\ } Edge}}}\\ 0&1\\ { - 2}&{ - 1}\\ { - 2}&0\\ { - 1}&1 \end{array}$ Step 3. Compare the results From this table we obtain the global minimum $f\left( {0,1} \right) = - 2$ and the global maximum $f\left( {1,0} \right) = 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.