Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 821: 5

Answer

(a) Solving the equations ${f_x} = 0$ and ${f_y} = 0$, we show that the critical points satisfy the following equations: $y\left( {y - 2x + 1} \right) = 0$, ${\ \ }$ $x\left( {2y - x + 1} \right) = 0$ (b) $f$ has three critical points where $x=0$ or $y=0$ (or both) and one critical point where $x$ and $y$ are nonzero: $\left( {0,0} \right)$, $\left( {0, - 1} \right)$, $\left( {1,0} \right)$, and $\left( {\frac{1}{3}, - \frac{1}{3}} \right)$. (c) $\begin{array}{*{20}{c}} {{\bf{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{{\bf{Discriminant}}}&{}\\ {{\bf{Point}}}&{ - 2y}&{2x}&{2y - 2x + 1}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\bf{Type}}}\\ {\left( {0,0} \right)}&0&0&1&{ - 1}&{{\rm{saddle{\ }point}}}\\ {\left( {0, - 1} \right)}&2&0&{ - 1}&{ - 1}&{{\rm{saddle{\ }point}}}\\ {\left( {1,0} \right)}&0&2&{ - 1}&{ - 1}&{{\rm{saddle{\ }point}}}\\ {\left( {\frac{1}{3}, - \frac{1}{3}} \right)}&{\frac{2}{3}}&{\frac{2}{3}}&{ - \frac{1}{3}}&{\frac{1}{3}}&{{\rm{local{\ }minimum}}} \end{array}$

Work Step by Step

(a) We have $f\left( {x,y} \right) = {y^2}x - y{x^2} + xy$. The partial derivatives are ${f_x} = {y^2} - 2xy + y$, ${\ \ }$ ${f_y} = 2yx - {x^2} + x$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${y^2} - 2xy + y = 0$, ${\ \ }$ $2yx - {x^2} + x = 0$ $y\left( {y - 2x + 1} \right) = 0$, ${\ \ }$ $x\left( {2y - x + 1} \right) = 0$ Hence, the critical points $\left( {x,y} \right)$ satisfy the equations (1) ${\ \ \ \ }$ $y\left( {y - 2x + 1} \right) = 0$, ${\ \ }$ $x\left( {2y - x + 1} \right) = 0$ (b) From the first equation of equation (1), we obtain $y=0$, ${\ \ \ \ }$ $y=2x-1$ From the second equation of equation (1), we obtain $x=0$, ${\ \ \ \ }$ $x=2y+1$ Substituting $y=0$ in $x=2y+1$; and $x=0$ in $y=2x-1$, we obtain the critical points: $\left( {0,0} \right)$, $\left( {0, - 1} \right)$, $\left( {1,0} \right)$. Solving $y-2x+1=0$ and $2y-x+1=0$ simultaneously gives $x = \frac{1}{3}$ and $y = - \frac{1}{3}$. So, we have another critical point $\left( {\frac{1}{3}, - \frac{1}{3}} \right)$. Thus, the critical points of $f$ are $\left( {0,0} \right)$, $\left( {0, - 1} \right)$, $\left( {1,0} \right)$ and $\left( {\frac{1}{3}, - \frac{1}{3}} \right)$. Hence, $f$ has three critical points where $x=0$ or $y=0$ (or both) and one critical point where $x$ and $y$ are nonzero. (c) The second partial derivatives are ${f_{xx}} = - 2y$, ${\ \ }$ ${f_{yy}} = 2x$, ${\ \ }$ ${f_{xy}} = 2y - 2x + 1$ Using the Second Derivative Test, we determine the nature of the critical points and list the results in the following table: $\begin{array}{*{20}{c}} {{\bf{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{{\bf{Discriminant}}}&{}\\ {{\bf{Point}}}&{ - 2y}&{2x}&{2y - 2x + 1}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\bf{Type}}}\\ {\left( {0,0} \right)}&0&0&1&{ - 1}&{{\rm{saddle{\ }point}}}\\ {\left( {0, - 1} \right)}&2&0&{ - 1}&{ - 1}&{{\rm{saddle{\ }point}}}\\ {\left( {1,0} \right)}&0&2&{ - 1}&{ - 1}&{{\rm{saddle{\ }point}}}\\ {\left( {\frac{1}{3}, - \frac{1}{3}} \right)}&{\frac{2}{3}}&{\frac{2}{3}}&{ - \frac{1}{3}}&{\frac{1}{3}}&{{\rm{local{\ }minimum}}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.