Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 821: 1

Answer

(a) Setting ${f_x}\left( {x,y} \right) = 0$ and ${f_y}\left( {x,y} \right) = 0$, we obtain the critical points: $P = \left( {0,0} \right)$, $\left( {2\sqrt 2 ,\sqrt 2 } \right)$, $\left( { - 2\sqrt 2 , - \sqrt 2 } \right)$. (b) The local minima are at $\left( {2\sqrt 2 ,\sqrt 2 } \right)$ and $\left( { - 2\sqrt 2 , - \sqrt 2 } \right)$. The saddle point is at $\left( {0,0} \right)$. The absolute minimum value is $-4$.

Work Step by Step

(a) We have $f\left( {x,y} \right) = {x^2} + {y^4} - 4xy$. The partial derivatives are ${f_x} = 2x - 4y$, ${\ \ \ }$ ${f_y} = 4{y^3} - 4x$ We find the critical points by first setting ${f_x}\left( {x,y} \right) = 0$. $2x - 4y = 0$, ${\ \ \ }$ $x = 2y$ Write $x=a$ and $y=b$, then $a=2b$. So, the solution is $\left( {x,y} \right) = \left( {2b,b} \right)$. Setting ${f_y}\left( {x,y} \right) = 0$ we get $4{y^3} - 4x = 0$. Substituting $\left( {x,y} \right) = \left( {2b,b} \right)$ in this equation gives $4{b^3} - 8b = 0$ $b\left( {{b^2} - 2} \right) = 0$ The solutions are $b=0$ or $b = \pm \sqrt 2 $. Hence, the critical points are $P = \left( {0,0} \right)$, $\left( {2\sqrt 2 ,\sqrt 2 } \right)$, $\left( { - 2\sqrt 2 , - \sqrt 2 } \right)$. (b) From Figure 18, we see that the local minima are at $\left( {2\sqrt 2 ,\sqrt 2 } \right)$ and $\left( { - 2\sqrt 2 , - \sqrt 2 } \right)$. The saddle point is at $\left( {0,0} \right)$. The absolute minimum value is obtained by substituting either $\left( {2\sqrt 2 ,\sqrt 2 } \right)$ or $\left( { - 2\sqrt 2 , - \sqrt 2 } \right)$ in $f\left( {x,y} \right)$: $f\left( {2\sqrt 2 ,\sqrt 2 } \right) = f\left( { - 2\sqrt 2 , - \sqrt 2 } \right) = - 4$ So, the absolute minimum value is $-4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.