Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 810: 49

Answer

We use Eq. (12) to prove that in polar coordinates: $\Delta f = {f_{rr}} + \frac{1}{{{r^2}}}{f_{\theta \theta }} + \frac{1}{r}{f_r}$

Work Step by Step

We have the relations between rectangular coordinates and polar coordinates: $x = r\cos \theta $, ${\ \ \ }$ $y = r\sin \theta $ In this exercise, $f$ is a function of $x$ and $y$, where $x = g\left( {r,\theta } \right)$, $y = h\left( {r,\theta } \right)$. Thus, $f = f\left( {g\left( {r,\theta } \right),h\left( {r,\theta } \right)} \right)$ The partial derivatives of $f$ with respect to $r$ is $\frac{{\partial f}}{{\partial r}} = {f_r} = \frac{{\partial f}}{{\partial g}}\frac{{\partial g}}{{\partial r}} + \frac{{\partial f}}{{\partial h}}\frac{{\partial h}}{{\partial r}}$ Since $x = g\left( {r,\theta } \right)$ and $y = h\left( {r,\theta } \right)$, so ${f_r} = {f_x}\cos \theta + {f_y}\sin \theta $ The partial derivatives of $x$ and $y$ are $\frac{{\partial x}}{{\partial r}} = \cos \theta $, ${\ \ \ }$ $\frac{{\partial y}}{{\partial r}} = \sin \theta $ $\frac{{{\partial ^2}x}}{{\partial {r^2}}} = 0$, ${\ \ \ }$ $\frac{{{\partial ^2}y}}{{\partial {r^2}}} = 0$ $\frac{{\partial x}}{{\partial \theta }} = - r\sin \theta $, ${\ \ \ }$ $\frac{{\partial y}}{{\partial \theta }} = r\cos \theta $ $\frac{{{\partial ^2}x}}{{\partial {\theta ^2}}} = - r\cos \theta $, ${\ \ \ }$ $\frac{{{\partial ^2}y}}{{\partial {\theta ^2}}} = - r\sin \theta $ Using Eq. (12) we obtain for $r$ ${f_{rr}} = {f_{xx}}{\left( {\frac{{\partial x}}{{\partial r}}} \right)^2} + 2{f_{xy}}\left( {\frac{{\partial x}}{{\partial r}}} \right)\left( {\frac{{\partial y}}{{\partial r}}} \right) + {f_{yy}}{\left( {\frac{{\partial y}}{{\partial r}}} \right)^2} + {f_x}\frac{{{\partial ^2}x}}{{\partial {r^2}}} + {f_y}\frac{{{\partial ^2}y}}{{\partial {r^2}}}$ (1) ${\ \ \ }$ ${f_{rr}} = {f_{xx}}{\cos ^2}\theta + 2{f_{xy}}\cos \theta \sin \theta + {f_{yy}}{\sin ^2}\theta $ Similarly, using Eq. (12) we obtain for $\theta$ ${f_{\theta \theta }} = {f_{xx}}{\left( {\frac{{\partial x}}{{\partial \theta }}} \right)^2} + 2{f_{xy}}\left( {\frac{{\partial x}}{{\partial \theta }}} \right)\left( {\frac{{\partial y}}{{\partial \theta }}} \right) + {f_{yy}}{\left( {\frac{{\partial y}}{{\partial \theta }}} \right)^2} + {f_x}\frac{{{\partial ^2}x}}{{\partial {\theta ^2}}} + {f_y}\frac{{{\partial ^2}y}}{{\partial {\theta ^2}}}$ ${f_{\theta \theta }} = {f_{xx}}{r^2}{\sin ^2}\theta - 2{r^2}{f_{xy}}\sin \theta \cos \theta $ ${\ \ \ \ \ \ \ \ }$ $ + {f_{yy}}{r^2}{\cos ^2}\theta - {f_x}r\cos \theta - {f_y}r\sin \theta $ (2) ${\ \ \ }$ $\frac{1}{{{r^2}}}{f_{\theta \theta }} = {f_{xx}}{\sin ^2}\theta - 2{f_{xy}}\sin \theta \cos \theta $ ${\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }$ $ + {f_{yy}}{\cos ^2}\theta - \frac{{{f_x}}}{r}\cos \theta - \frac{{{f_y}}}{r}\sin \theta $ Adding equation (1) and equation (2) gives ${f_{rr}} + \frac{1}{{{r^2}}}{f_{\theta \theta }} = {f_{xx}} + {f_{yy}} - \frac{1}{r}\left( {{f_x}\cos \theta + {f_y}\sin \theta } \right)$ But ${f_r} = {f_x}\cos \theta + {f_y}\sin \theta $. So, ${f_{rr}} + \frac{1}{{{r^2}}}{f_{\theta \theta }} = {f_{xx}} + {f_{yy}} - \frac{1}{r}{f_r}$ Since $\Delta f = {f_{xx}} + {f_{yy}}$, hence we obtain Eq. (13): $\Delta f = {f_{rr}} + \frac{1}{{{r^2}}}{f_{\theta \theta }} + \frac{1}{r}{f_r}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.