Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 810: 43

Answer

We use the limit definition of Section 15.3 to prove that ${f_x}\left( {x,y,z} \right)$ is homogeneous of degree $n-1$.

Work Step by Step

Let $f\left( {x,y,z} \right)$ be homogeneous of degree $n$. Using the limit definition of Section 15.3, we have the partial derivative ${f_x}\left( {x,y,z} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h,y,z} \right) - f\left( {x,y,z} \right)}}{h}$ Next, we evaluate the limit: ${f_x}\left( {\lambda x,\lambda y,\lambda z} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {\lambda x + \lambda h,\lambda y,\lambda z} \right) - f\left( {\lambda x,\lambda y,\lambda z} \right)}}{{\lambda h}}$ Since $f\left( {x,y,z} \right)$ is homogeneous of degree $n$, we have $f\left( {\lambda x,\lambda y,\lambda z} \right) = {\lambda ^n}f\left( {x,y,z} \right)$ $f\left( {\lambda x + \lambda h,\lambda y,\lambda z} \right) = f\left( {\lambda \left( {x + h} \right),\lambda y,\lambda z} \right) = {\lambda ^n}f\left( {x + h,y,z} \right)$ Thus, the partial derivative becomes ${f_x}\left( {\lambda x,\lambda y,\lambda z} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{{\lambda ^n}f\left( {x + h,y,z} \right) - {\lambda ^n}f\left( {x + h,y,z} \right)}}{{\lambda h}}$ $ = {\lambda ^{n - 1}}\mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h,y,z} \right) - f\left( {x,y,z} \right)}}{h}$ $ = {\lambda ^{n - 1}}{f_x}\left( {x,y,z} \right)$ Hence, by definition ${f_x}\left( {x,y,z} \right)$ is homogeneous of degree $n-1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.