Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.6 Planetary Motion According to Kepler and Newton - Exercises - Page 751: 8

Answer

We take the derivatives of ${\bf{r}}\left( t \right)$ and show it satisfies the differential equation, Eq. (1): (1) ${\ \ \ }$ ${\bf{r}}{\rm{''}}\left( t \right) = - \frac{k}{{||{\bf{r}}\left( t \right)|{|^2}}}{{\bf{e}}_r}$ provided that ${\omega ^2} = k{R^{ - 3}}$. Then, we deduce Kepler's Third Law: ${T^2} = \left( {\frac{{4{\pi ^2}}}{k}} \right){R^3}$.

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {R\cos \omega t,R\sin \omega t} \right)$. So, $||{\bf{r}}\left( t \right)|| = R$ ${\bf{r}}'\left( t \right) = \left( { - \omega R\sin \omega t,\omega R\cos \omega t} \right)$ ${\bf{r}}{\rm{''}}\left( t \right) = \left( { - {\omega ^2}R\cos \omega t, - {\omega ^2}R\sin \omega t} \right)$ It follows that ${\bf{r}}{\rm{''}}\left( t \right) = - {\omega ^2}\left( {R\cos \omega t,R\sin \omega t} \right) = - {\omega ^2}{\bf{r}}\left( t \right)$ Write ${\omega ^2} = k{R^{ - 3}}$. So, ${\bf{r}}{\rm{''}}\left( t \right) = - \frac{k}{{{R^3}}}{\bf{r}}\left( t \right)$ Since $||{\bf{r}}\left( t \right)|| = R$ and the unit radial vector ${{\bf{e}}_r} = \frac{{{\bf{r}}\left( t \right)}}{{||{\bf{r}}\left( t \right)||}}$, so ${\bf{r}}{\rm{''}}\left( t \right) = - \frac{k}{{||{\bf{r}}\left( t \right)|{|^3}}}{\bf{r}}\left( t \right) = - \frac{k}{{||{\bf{r}}\left( t \right)|{|^2}}}{{\bf{e}}_r}$ Thus, ${\bf{r}}\left( t \right)$ satisfies the differential equation, Eq. (1). Since $T = \frac{{2\pi }}{\omega }$, so ${T^2} = \frac{{4{\pi ^2}}}{{{\omega ^2}}} = 4{\pi ^2}\frac{{{R^3}}}{k}$ Thus, Kepler's Third Law becomes ${T^2} = \left( {\frac{{4{\pi ^2}}}{k}} \right){R^3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.