Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.3 Dot Product and the Angle Between Two Vectors - Exercises - Page 668: 89

Answer

$\left( {\lambda {\bf{v}}} \right)\cdot{\bf{w}} = \lambda \left( {{\bf{v}}\cdot{\bf{w}}} \right)$ for any scalar $\lambda $.

Work Step by Step

Let the components of ${\bf{v}}$ and ${\bf{w}}$ be given by, ${\bf{v}} = \left( {{v_1},{v_2},{v_3}} \right)$, ${\ }$ ${\bf{w}} = \left( {{w_1},{w_2},{w_3}} \right)$. Let $\lambda$ be any scalar. So, $\left( {\lambda {\bf{v}}} \right)\cdot{\bf{w}} = \left( {\lambda {v_1},\lambda {v_2},\lambda {v_3}} \right)\cdot\left( {{w_1},{w_2},{w_3}} \right)$ $\left( {\lambda {\bf{v}}} \right)\cdot{\bf{w}} = \lambda {v_1}{w_1} + \lambda {v_2}{w_2} + \lambda {v_3}{w_3}$ $\left( {\lambda {\bf{v}}} \right)\cdot{\bf{w}} = \lambda \left( {{v_1}{w_1} + {v_2}{w_2} + {v_3}{w_3}} \right)$ Since ${\bf{v}}\cdot{\bf{w}} = {v_1}{w_1} + {v_2}{w_2} + {v_3}{w_3}$, therefore $\left( {\lambda {\bf{v}}} \right)\cdot{\bf{w}} = \lambda \left( {{\bf{v}}\cdot{\bf{w}}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.