Answer
Since
$||{\bf{v}} + {\bf{w}}|{|^2} = ||{\bf{v}}|{|^2} + 2{\bf{v}}\cdot{\bf{w}} + ||{\bf{w}}|{|^2}$
and
$||{\bf{v}} - {\bf{w}}|{|^2} = ||{\bf{v}}|{|^2} - 2{\bf{v}}\cdot{\bf{w}} + ||{\bf{w}}|{|^2}$
so
$||{\bf{v}} + {\bf{w}}|{|^2} - ||{\bf{v}} - {\bf{w}}|{|^2} = 4{\bf{v}}\cdot{\bf{w}}$.
Work Step by Step
Write
$||{\bf{v}} + {\bf{w}}|{|^2} = \left( {{\bf{v}} + {\bf{w}}} \right)\cdot\left( {{\bf{v}} + {\bf{w}}} \right) = {\bf{v}}\cdot{\bf{v}} + {\bf{w}}\cdot{\bf{v}} + {\bf{v}}\cdot{\bf{w}} + {\bf{w}}\cdot{\bf{w}}$
$||{\bf{v}} + {\bf{w}}|{|^2} = ||{\bf{v}}|{|^2} + 2{\bf{v}}\cdot{\bf{w}} + ||{\bf{w}}|{|^2}$
Write
$||{\bf{v}} - {\bf{w}}|{|^2} = \left( {{\bf{v}} - {\bf{w}}} \right)\cdot\left( {{\bf{v}} - {\bf{w}}} \right) = {\bf{v}}\cdot{\bf{v}} - {\bf{w}}\cdot{\bf{v}} - {\bf{v}}\cdot{\bf{w}} + {\bf{w}}\cdot{\bf{w}}$
$||{\bf{v}} - {\bf{w}}|{|^2} = ||{\bf{v}}|{|^2} - 2{\bf{v}}\cdot{\bf{w}} + ||{\bf{w}}|{|^2}$
So,
$||{\bf{v}} + {\bf{w}}|{|^2} - ||{\bf{v}} - {\bf{w}}|{|^2} = ||{\bf{v}}|{|^2} + 2{\bf{v}}\cdot{\bf{w}} + ||{\bf{w}}|{|^2} - \left( {||{\bf{v}}|{|^2} - 2{\bf{v}}\cdot{\bf{w}} + ||{\bf{w}}|{|^2}} \right)$
Hence, $||{\bf{v}} + {\bf{w}}|{|^2} - ||{\bf{v}} - {\bf{w}}|{|^2} = 4{\bf{v}}\cdot{\bf{w}}$.