Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - Chapter Review Exercises - Page 638: 23

Answer

The curve has finite length for $0 \le t < \infty $. Its length is $s = \sqrt 2 $

Work Step by Step

Since $c\left( t \right) = \left( {{{\rm{e}}^{ - t}}\cos t,{{\rm{e}}^{ - t}}\sin t} \right)$, we have $x\left( t \right) = {{\rm{e}}^{ - t}}\cos t$, ${\ \ }$ $x'\left( t \right) = - {{\rm{e}}^{ - t}}\cos t - {{\rm{e}}^{ - t}}\sin t$, $y\left( t \right) = {{\rm{e}}^{ - t}}\sin t$, ${\ \ }$ $y'\left( t \right) = - {{\rm{e}}^{ - t}}\sin t + {{\rm{e}}^{ - t}}\cos t$. By Theorem 1 of Section 12.2, the length of the curve for $0 \le t < \infty $ is $s = \mathop \smallint \limits_0^\infty \sqrt {{{\left( { - {{\rm{e}}^{ - t}}\cos t - {{\rm{e}}^{ - t}}\sin t} \right)}^2} + {{\left( { - {{\rm{e}}^{ - t}}\sin t + {{\rm{e}}^{ - t}}\cos t} \right)}^2}} {\rm{d}}t$ $s = \mathop \smallint \limits_0^\infty \sqrt {{{\rm{e}}^{ - 2t}}{{\left( { - \cos t - \sin t} \right)}^2} + {{\rm{e}}^{ - 2t}}{{\left( { - \sin t + \cos t} \right)}^2}} {\rm{d}}t$ $s = \mathop \smallint \limits_0^\infty {{\rm{e}}^{ - t}}\sqrt {{{\cos }^2}t + 2\cos t\sin t + {{\sin }^2}t + {{\sin }^2}t - 2\sin t\cos t + {{\cos }^2}t} {\rm{d}}t$ $s = \mathop \smallint \limits_0^\infty {{\rm{e}}^{ - t}}\sqrt 2 {\rm{d}}t$ $s = - \sqrt 2 {{\rm{e}}^{ - t}}|_0^\infty = - \sqrt 2 \left( {0 - 1} \right) = \sqrt 2 $ Hence, the curve has finite length for $0 \le t < \infty $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.