Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - Chapter Review Exercises - Page 638: 22

Answer

The length: $s = 5\left( {{\rm{e}} - 1} \right)$

Work Step by Step

We have $x\left( t \right) = 3{{\rm{e}}^t} - 3$, ${\ \ }$ $x'\left( t \right) = 3{{\rm{e}}^t}$, $y\left( t \right) = 4{{\rm{e}}^t} + 7$, ${\ \ }$ $y'\left( t \right) = 4{{\rm{e}}^t}$. By Theorem 1 of Section 12.2, the length of the curve for $0 \le t \le 1$ is $s = \mathop \smallint \limits_0^1 \sqrt {{{\left( {3{{\rm{e}}^t}} \right)}^2} + {{\left( {4{{\rm{e}}^t}} \right)}^2}} {\rm{d}}t = \mathop \smallint \limits_0^1 \sqrt {9{{\rm{e}}^{2t}} + 16{{\rm{e}}^{2t}}} {\rm{d}}t$ $s = 5\mathop \smallint \limits_0^1 {{\rm{e}}^t}{\rm{d}}t = 5{{\rm{e}}^t}|_0^1 = 5\left( {{\rm{e}} - 1} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.