Answer
$\pi$
Work Step by Step
Since $r=f(\theta)= \sin\theta$, then $f'(\theta)=\cos\theta$ The length is given by
\begin{align*} \text { The length }&=\int_{0}^{\pi} \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta\\
&=\int_{0}^{\pi}\sqrt{\sin^2\theta+\cos^2\theta} d \theta\\
&=\int_{0}^{\pi}1 d \theta\\
&=\pi.
\end{align*}