Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.3 Polar Coordinates - Exercises - Page 617: 4

Answer

(a) $\left( {r,\theta } \right) = \left( {3.606,0.983} \right)$ (b) $\left( {r,\theta } \right) = \left( {8.062, - 1.051} \right)$ (c) $\left( {r,\theta } \right) = \left( {8.544,4.354} \right)$ (d) $\left( {r,\theta } \right) = \left( {5.385,2.761} \right)$

Work Step by Step

Use the conversion formula from rectangular coordinates to polar coordinates given by $r = \sqrt {{x^2} + {y^2}} $, ${\ \ \ }$ $\theta = {\tan ^{ - 1}}\left( {\frac{y}{x}} \right)$. (a) Since $\left( {x,y} \right) = \left( {2,3} \right)$, we have $r = \sqrt {4 + 9} \simeq 3.605$, ${\ \ \ }$ $\theta = {\tan ^{ - 1}}\left( {\frac{3}{2}} \right) \simeq 0.983$. So, $\left( {r,\theta } \right) = \left( {3.606,0.983} \right)$. (b) Since $\left( {x,y} \right) = \left( {4, - 7} \right)$, we have $r = \sqrt {16 + 49} \simeq 8.062$, ${\ \ \ }$ $\theta = {\tan ^{ - 1}}\left( {\frac{{ - 7}}{4}} \right) \simeq - 1.051$. So, $\left( {r,\theta } \right) = \left( {8.062, - 1.051} \right)$. (c) Since $\left( {x,y} \right) = \left( { - 3, - 8} \right)$, we have $r = \sqrt {9 + 64} \simeq 8.544$, ${\ \ \ }$ $\theta = {\tan ^{ - 1}}\left( {\frac{{ - 8}}{{ - 3}}} \right) \simeq 4.354$. So, $\left( {r,\theta } \right) = \left( {8.544,4.354} \right)$. (d) Since $\left( {x,y} \right) = \left( { - 5,2} \right)$, we have $r = \sqrt {25 + 4} \simeq 5.385$, ${\ \ \ }$ $\theta = {\tan ^{ - 1}}\left( {\frac{2}{{ - 5}}} \right) \simeq 2.761$. So, $\left( {r,\theta } \right) = \left( {5.385,2.761} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.