Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.3 Polar Coordinates - Exercises - Page 617: 1

Answer

$\begin{array}{*{20}{c}} {Point}\\ {}\\ A\\ B\\ C\\ D\\ E\\ F\\ G \end{array}\begin{array}{*{20}{c}} {Rectangular}\\ {\left( {x,y} \right)}\\ {\left( { - 3,3} \right)}\\ {\left( { - 3,0} \right)}\\ {\left( { - 2, - 1} \right)}\\ {\left( { - 1, - 1} \right)}\\ {\left( {1,1} \right)}\\ {\left( {2\sqrt 3 ,2} \right)}\\ {\left( {2\sqrt 3 , - 2} \right)} \end{array}\begin{array}{*{20}{c}} {Polar}\\ {\left( {r,\theta } \right)}\\ {\left( {3\sqrt 2 ,\frac{3}{4}\pi } \right)}\\ {\left( {3,\pi } \right)}\\ {\left( {\sqrt 5 ,\pi + {{\tan }^{ - 1}}\left( {\frac{1}{2}} \right)} \right)}\\ {\left( {\sqrt 2 , \frac{5}{4}\pi } \right)}\\ {\left( {\sqrt 2 ,\frac{\pi }{4}} \right)}\\ {\left( {4,\frac{\pi }{6}} \right)}\\ {\left( {4, \frac{11\pi }{6}} \right)} \end{array}$

Work Step by Step

Using the conversion formula from rectangular coordinates to polar coordinates given by $r = \sqrt {{x^2} + {y^2}} $, ${\ \ \ }$ $\theta = {\tan ^{ - 1}}\left( {\frac{y}{x}} \right)$ we obtain the polar coordinates. $\begin{array}{*{20}{c}} {Point}\\ {}\\ A\\ B\\ C\\ D\\ E\\ F\\ G \end{array}\begin{array}{*{20}{c}} {Rectangular}\\ {\left( {x,y} \right)}\\ {\left( { - 3,3} \right)}\\ {\left( { - 3,0} \right)}\\ {\left( { - 2, - 1} \right)}\\ {\left( { - 1, - 1} \right)}\\ {\left( {1,1} \right)}\\ {\left( {2\sqrt 3 ,2} \right)}\\ {\left( {2\sqrt 3 , - 2} \right)} \end{array}\begin{array}{*{20}{c}} {Polar}\\ {\left( {r,\theta } \right)}\\ {\left( {3\sqrt 2 ,\frac{3}{4}\pi } \right)}\\ {\left( {3,\pi } \right)}\\ {\left( {\sqrt 5 ,\pi + {{\tan }^{ - 1}}\left( {\frac{1}{2}} \right)} \right)}\\ {\left( {\sqrt 2 , \frac{5}{4}\pi } \right)}\\ {\left( {\sqrt 2 ,\frac{\pi }{4}} \right)}\\ {\left( {4,\frac{\pi }{6}} \right)}\\ {\left( {4, \frac{11\pi }{6}} \right)} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.