Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.2 Arc Length and Speed - Exercises - Page 611: 9

Answer

$$8\left(-\frac{1}{\sqrt{2}}+1\right)$$

Work Step by Step

\begin{aligned} s &=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\ &=\int_{0}^{\frac{x}{2}} \sqrt{4(\sin 2 t-\sin t)^{2}+4(\cos t-\cos 2 t)^{2}} d t \\ &=\int_{0}^{\frac{\pi}{2}} 2 \sqrt{\sin ^{2}(2 t)-2 \sin (2 t) \sin t+\sin ^{2} t+\cos ^{2} t-2 \cos (2 t) \cos t+\cos ^{2} t} d t \\ &=\int_{0}^{\frac{\pi}{2}} 2 \sqrt{\sin ^{2}(2 t)-2 \sin (2 t) \sin t+\cos ^{2} t-2 \cos (2 t) \cos t+1} d t \\ &= \int_{0}^{\frac{\pi}{2}} 2 \sqrt{\sin ^{2}(2 t)-2 \sin (2 t) \sin t+\cos ^{2} t-2 \cos (2 t) \cos t+1} d t \\ &=2 \int_{0}^{\frac{\pi}{2}} \sqrt{-2 \sin (2 t) \sin t-2 \cos (2 t) \cos t+2} d t \\ &=2 \int_{0}^{\frac{\pi}{2}} \sqrt{2} \sqrt{-2 \sin t \cos t \sin t-\left(1-2 \sin ^{2} t\right)\left(1-2 \sin ^{2} \frac{t}{2}\right)+1} d t\\ &=2 \sqrt{2} \int_{0}^{\frac{\pi}{2}} \sqrt{-2 \sin ^{2} t\left(1-2 \sin ^{2} \frac{t}{2}\right)-\left(1-2 \sin ^{2} t-2 \sin ^{2} \frac{t}{2}+4 \sin ^{2} t \sin ^{2} \frac{t}{2}\right)+1} d t\\ &=2 \sqrt{2} \int_{0}^{\frac{\pi}{2}} \sqrt{2} \sin \frac{t}{2} d t\\ &=4 \int_{0}^{\frac{\pi}{2}} \sin \frac{t}{2} d t\\ &=\left.4 \cdot \frac{-\cos \frac{t}{2}}{1 / 2}\right|_{0} ^{\frac{\pi}{2}} \\ &=8\left(-\frac{1}{\sqrt{2}}+1\right) \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.