Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.2 Arc Length and Speed - Exercises - Page 611: 10

Answer

$$40$$

Work Step by Step

\begin{aligned} s &=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\ &=\int_{0}^{2 \pi} \sqrt{100 \sin ^{4} \frac{\theta}{2}+100 \sin ^{2} \frac{\theta}{2} \cos ^{2} \frac{\theta}{2}} d \theta \\ &=\int_{0}^{2 \pi} \sqrt{100 \sin ^{2} \frac{\theta}{2}\left[\sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}\right]} d \theta \\ &=\int_{0}^{2 \pi} \sqrt{100 \sin ^{2} \frac{\theta}{2}} d \theta \\ &=\int_{0}^{2 \pi} 10 \sin \frac{\theta}{2} d \theta \\ &=\left.10 \cdot \frac{-\cos \frac{\theta}{2}}{1 / 2}\right|_{0} ^{2 \pi}\\ &= 40 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.