Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.6 Power Series - Exercises - Page 578: 36

Answer

$$ \sum_{n=0}^{\infty}(-3) ^nx^ {n}$$ $|x|\lt 1/3$

Work Step by Step

Given $$ f(x)=\frac{1}{1+ 3x}$$ Since $$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n},\ \ \ \ |x|\lt 1\tag{1}$$ By using (1), we get \begin{align*} \frac{1}{1+3 x}&=\frac{1}{1-(-3 x)}\\ &= \sum_{n=0}^{\infty}(-3 x)^{n}\\ &= \sum_{n=0}^{\infty}(-3) ^nx^ {n} \end{align*} Such that $ |-3x|\lt1$, or $|x|\lt 1/3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.