Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.6 Power Series - Exercises - Page 578: 31

Answer

converges for all $x$

Work Step by Step

Given $$\sum_{n=0}^{\infty} \frac{(-5)^{n}}{n !}(x+10)^{n}$$ Since $a_n = \frac{(-5)^{n}}{n !}(x+10)^{n}$ and $a_{n+1} = \frac{(-5)^{n+1}}{(n+1( !}(x+10)^{n+1}$, then \begin{aligned} \rho&=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|\\ &=\lim _{n \rightarrow \infty}\left|\frac{(-5)^{n+1}(x+10)^{n+1}}{(n+1) !} \cdot \frac{n !}{(-5)^{n}(x+10)^{n}}\right|\\ &=\lim _{n \rightarrow \infty}\left|5(x+10) \frac{1}{n}\right|\\ &=\left|5(x+10) \right| \lim _{n \rightarrow \infty}\frac{1}{n}\\ &=0 \end{aligned} Then the series converges for all $x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.