Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.6 Power Series - Exercises - Page 577: 18

Answer

The series converges for all $x$ and and the radius of converges is $R=\infty $.

Work Step by Step

Apply the ratio test: \begin{aligned} \rho=& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\ &=\left|\frac{\frac{4 \times 4^{n} \times x^{-2} x^{2 n-1}}{(2 n+3)(2 n+2)(2 n+1) !}}{\frac{4^{n} x^{2 n-1}}{(2 n+1) !}}\right| \\ &=\lim _{n \rightarrow \infty}\left|\frac{4 \times 4^{n} \times x^{2 n-1}}{x^{2} \times 4^{n} \cdot x^{2 n-1}} \cdot \frac{(2 n+1) !}{(2 n+3)(2 n+2)(2 n+1) !}\right| \\ &=4 \frac{1}{x^{2}} \lim _{n \rightarrow \infty} \frac{1}{(2 n+3)(2 n+3)}\\ &=0 \end{aligned} Then the series converges for all $x$ and the radius of converges is $R=\infty$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.