Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.6 Power Series - Exercises - Page 577: 12

Answer

The series converges for all $x$ in the interval $(-2,2)$.

Work Step by Step

We apply the ratio test $$ \rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} |\frac{(-1)^{(n+1)}(n+1)x^{2n+1}/4^{n+1} }{(-1)^{n}(n)x^{2n}/4^{n}}|=\frac{|x^2|}{4}\lim _{n \rightarrow \infty} \frac{n+1}{n}=\frac{x^2}{4}. $$ Hence, the series $\Sigma_{n=0}^{\infty} (-1)^{n}(n)x^{2n}/4^{n}$ converges if and only if $\frac{x^2}{4}\lt1$. That is the interval of convergence is $(- 2, 2)$. Now, we check the end points: At $x=- 2$, then $\Sigma_{n=0}^{\infty} (-1)^{n}(n)x^{2n}/4^{n}=\Sigma_{n=0}^{\infty} (-1)^{n}n$, diverges (limit Test) At $x= 2$, then $\Sigma_{n=0}^{\infty} (-1)^{n}(n)x^{2n}/4^{n}=\Sigma_{n=0}^{\infty} (-1)^{n}n$, diverges (Limit Test) Hence, the series converges for all $x$ in the interval $(-2,2)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.