Answer
Converges
Work Step by Step
Given $$\sum_{n=1}^{\infty}\sin \frac{1}{n^{2}} $$ Since for $n\geq1$ \begin{aligned} \sin \frac{1}{n^{2}} \leq \frac{1}{n^{2}} \end{aligned} Compare with $\displaystyle\sum_{n=1}^{\infty} \frac{1}{n^{2}} $, a convergent $p-$series $p=2 $; then $\displaystyle\sum_{n=1}^{\infty}\sin \frac{1}{n^{2}} $ also converges.