Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.4 Exercises - Page 291: 103

Answer

$$8190{\text{ Liters}}$$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( t \right){\text{be the liters of water flowing from the tank}}{\text{. By the}} \cr & {\text{concept of the derivative }}f'\left( t \right){\text{ is the rate of the flow}} \cr & f'\left( t \right) = \left( {500 - 5t} \right){\text{ in Lit per minute, then for 18 minutes}} \cr & f'\left( t \right) = \int_0^{18} {\left( {500 - 5t} \right)dt} \cr & f'\left( t \right) = \left[ {500t - \frac{{5{t^2}}}{2}} \right]_0^{18} \cr & {\text{Evaluating}} \cr & f'\left( t \right) = \left[ {500\left( {18} \right) - \frac{{5{{\left( {18} \right)}^2}}}{2}} \right] - \left[ {500\left( 0 \right) - \frac{{5{{\left( 0 \right)}^2}}}{2}} \right] \cr & f'\left( t \right) = 8190 - 0 \cr & f'\left( t \right) = 8190{\text{ Liters}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.