Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.2 Exercises - Page 265: 74

Answer

(a)$ \frac{2\pi}{n}$ (b) $A=\frac{1}{2}r^2sin(T)$ (c)$ \pi r^2$

Work Step by Step

(a) Total angle around a point = 360 deg = $2\pi$ Therefore the central angle $$T = \frac{2\pi}{n}$$ (b) Area of a triangle = $\frac{1}{2}\times base \times height = \frac{1}{2} \times r \times rsin(T ) = \frac{1}{2}r^2sin(T)$ (c) Total Area of the polygon = $n\times$ area of a triangle Therefore, $A_n = n \times \frac{1}{2}r^2sin(\frac{2\pi}{n})$ $\lim\limits_{n \to \infty}A_n = \frac{1}{2}r^2 \lim\limits_{n \to \infty} n\times sin(\frac{2\pi}{n}) = 2\pi \times \frac{1}{2}r^2 \lim\limits_{n \to \infty} \frac{n}{2\pi}\times sin(\frac{2\pi}{n}) $ Now, $ \lim\limits_{n \to \infty} \frac{n}{2\pi}\times sin(\frac{2\pi}{n}) = \lim\limits_{n \to \infty}\frac{sin(\frac{2\pi}{n}) }{ \frac{2\pi}{n}} = \lim\limits_{x \to 0} \frac{sin(x)}{x} = 1$ So, $$\lim\limits_{n \to \infty}A_n = 2\pi \times \frac{1}{2}r^2 \times 1 = \pi r^2$$ You might note that this is equal to the area of the circle.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.